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Abstract 
 

Travel time and travel cost are key variables for explaining travel behaviour and 
deriving the value of time. However, a general problem in transport modelling is that 
these variables are subject to measurement errors in transport network models. In 
this paper we show how to assess the magnitude of the measurement errors in travel 
time and travel cost by latent variables, in a large-scale travel demand model. The 
case study for Stockholm commuters shows that assuming multiplicative 
measurement errors for travel time and cost result in a better fit than additive ones; 
however, when measurement errors are modelled, the estimated time and cost 
parameters are robust to the modelling assumptions. Moreover, our results suggest 
that measurement errors in our dataset are larger for the travel cost than for the 
travel time, and that measurement errors are larger in self-reported travel time than 
software-calculated travel time for car-driver and car-passenger, and of similar 
magnitude for public transport. Among self-reported travel times, car-passenger has 
the largest errors, followed by car-driver and public transport, and for the software-
calculated times, public transport exhibits larger errors than car.  These errors, if not 
corrected, lead to biases in measures derived from the models, such as elasticity and 
values of travel time. 

 
Keywords: Hybrid choice models; Latent variables; Error quantification; 
Measurement error models; RP Value of Time, Self-reported indicators 
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1. INTRODUCTION 
Although considerable research has been devoted to measurement errors in the 
econometric literature, far less attention has been paid to measurement errors 
in discrete choice modelling and transportation. Recent studies in the 
transportation field have shown that when measurement errors exist in discrete 
choice models, the explanatory variable becomes correlated with the error 
term, and endogeneity problems arise, analogous to those of their linear 
counterparts (Díaz et al., 2015; Vij and Walker, 2016). To reduce bias arising 
from measurement errors, statistical models that can be used to accommodate 
errors in explanatory variables have become increasingly popular; and among 
them, the Hybrid Choice Model (HCM) is the modern workhorse in discrete 
choice analysis. 
 
Parameter bias due to measurement errors in input variables has been 
highlighted as a substantial problem in the appraisal of policy. For instance, 
there are reasons to expect that travel cost variables have substantial errors, 
which attenuate the cost parameters in transport models and lead to under-
estimation of the response to pricing measures in appraisal. Moreover, errors in 
the time and the cost variables are one major reason for collecting Stated 
Preference (SP) data for value of time estimation, leading to other problems, 
such as: reference dependence and gain-loss asymmetry (De Borger and 
Fosgerau, 2008; Börjesson and Eliasson, 2014; Börjesson and Fosgerau, 2015; 
Hess et al., 2017).  
 
The aim of this paper is to explore the capabilities of the HCM framework to 
quantify the magnitude of the errors in the key explanatory variables in large-
scale travel demand modelling. Quantification of the measurement errors in 
input data will help identifying the least reliable variables, aiding modellers to 
concentrate efforts where they are most needed. Hence, we expect our findings 
to be of interest not only to discrete choice modellers, but also to transport 
planning practitioners.  
 
The first application of the HCM to account for measurement errors can be 
found in Walker et al. (2010), where a latent variable approach is introduced to 
deal with error-prone travel times. Using the same methodology, Guevara 
(2015) and Varotto et al. (2017) investigate how the time parameter changes 
when accounting for measurement errors. Furthermore, Walker et al. (2010) 
and Vij and Walker (2016) use Monte Carlo experiments to show that the 
estimated parameters converge to their true value as the model accounts for 
measurement errors in the input variables. However, these studies do not treat 
cost variables as latent, or model more than one latent variable at a time; and, to 
date, no study on large-scale transport models has quantified measurement 
errors in both time and cost variables; important biases therefore could not be 
detected. Nor do these studies use self-reported travel times and costs, which 
are a feature of some travel surveys and which give useful additional 
information about biases. 
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In this study, we use a HCM to account for measurement errors in the time and 
cost variables in a large-scale mode choice model estimated on National Travel 
Survey (NTS) data. First, we explore the sensitivity of parameter estimates to 
different modelling assumptions. We show that assumptions regarding the 
distributions of the latent variables and the measurement error impact the 
estimated error in the latent attributes. However, the parameter estimates of 
the utility function are robust, given that errors are modelled. Second, we show 
how goodness-of-fit measurements can be used to rank different measurement 
error model formulations. In our case study, we find that the multiplicative 
measurement error model provides a better fit to the observed data than the 
classical additive measurement error model used in previous studies. Third, we 
show how the measurement errors in the time and the cost variables can be 
compared using a multiplicative measurement error formulation, and we find 
that the cost variables have larger measurement errors. Fourth, we present the 
policy implications of these findings, including impact on the model elasticities 
and Values of Travel Time (VoT). 
 
The rest of the paper is structured as follows: Section 2 presents the modelling 
framework and the modelling assumptions to be tested. Section 3 provides an 
overview of the data. Section 4 presents the application of the framework in a 
case study. Section 5 gives some model properties and Section 6 concludes. 

2. METHODOLOGY 

2.1. Hybrid Choice Model 
We take the equation framework of Walker et al. (2010) as our starting point. 
These authors treat the true value of the explanatory variable suffering from 
measured errors as a latent variable (𝑋𝑋), known only up to a distribution 
𝑓𝑓𝑋𝑋(𝑋𝑋;𝜃𝜃), where 𝜃𝜃 is a set of estimated parameters, and the measured value of 
the variable (𝑋𝑋) is used as an indicator (𝐼𝐼) . They define a mode choice model, 
with the choice probability of alternative i conditional on the set of parameters 
𝛽𝛽: 
 
𝑃𝑃(𝑖𝑖|𝛽𝛽,𝑋𝑋).  (1) 

 
Since 𝑋𝑋 is unknown, it is necessary to integrate the conditional choice 
probability over the distribution of 𝑋𝑋: 
 
𝑃𝑃(𝑖𝑖|𝛽𝛽,𝜃𝜃) = ∫𝑃𝑃(𝑖𝑖|𝛽𝛽,𝑋𝑋) 𝑓𝑓𝑋𝑋(𝑋𝑋;𝜃𝜃)𝑑𝑑𝑋𝑋 . (2) 

 
The measurement equation assumes that the distribution of the indicator (𝐼𝐼) 
conditional on 𝑋𝑋 and a set of estimated parameters 𝜆𝜆 is  
 
𝐼𝐼~𝑓𝑓𝑀𝑀(𝐼𝐼|𝑋𝑋; 𝜆𝜆).  (3) 

 
Putting the pieces together, the likelihood function of the choice model is  
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𝐿𝐿(𝑖𝑖, 𝐼𝐼|𝛽𝛽,𝜃𝜃, 𝜆𝜆) = �𝑃𝑃(𝑖𝑖|𝛽𝛽,𝑋𝑋) 𝑓𝑓𝑋𝑋(𝑋𝑋;𝜃𝜃)𝑓𝑓𝑀𝑀(𝐼𝐼|𝑋𝑋; 𝜆𝜆)𝑑𝑑𝑋𝑋  (4) 

 
The unknown parameters (𝛽𝛽,𝜃𝜃, 𝜆𝜆) can be estimated using maximum likelihood 
estimation, using observed choices, observed characteristics of the alternatives 
and individuals, and the indicator variables. 
 
The model schematics are shown by Figure 1, where observed variables, 
indicators and choices are represented by rectangular boxes, whilst unobserved 
variables such as utilities and latent variables are represented by ellipses. In 
addition, structural equations are represented by continuous lines and 
measurement equations by dashed lines. 
 

 
Figure 1. Integrated Choice and Latent Variable framework1 

 
In this paper we go beyond the work of Walker et al. (2010) by further 
developing the specification of the model, including both the latent variable 
distribution (using different distributions) and the measurement relationship 
between the measured travel time and the latent variable (better capturing the 
sources of error). We show how parameter estimates of the measurement 
equations can be used not only to assess the goodness-of-fit of the postulated 
theories, but also to provide insights into the magnitude and nature of the 
errors in the explanatory variables. 

2.2. HCM modelling assumptions 
Several assumptions are required to implement the mode choice model defined 
in Section 2.1 Assumptions include the functional form of the choice model 
defined by (1), the prior distribution for each latent variable, 𝑓𝑓𝑋𝑋 , and the 
measurement equation (3). These assumptions and their potential effects on the 
results are discussed in subsections 2.2.1 to 2.2.4. 

                                                        
1 Here we show the possibility of multiple indicators for each latent variable; 
previous work has used just a single indicator for each of these. 



Quantifying errors in travel time and cost by latent variables.  
 2018-01-29 

5 
 

2.2.1 – Functional form of the choice model 
 
We take the choice model in (1) to be the Multinomial Logit (MNL) including 
time and cost variables for all modes. A full description of the model utility 
functions is provided in Appendix 1. 

2.2.2 – Latent variable distributions 
 
Latent variables are known only up to the distributions 𝑓𝑓𝑋𝑋 . In practice, most 
latent variables are assumed to have normal priors, see for instance Walker et 
al. (2010), Díaz et al. (2015), Vij and Walker (2016) or Varotto et al. (2017), 
even in cases where the represented variable cannot take negative values. The 
use of normal distributions is supported by Bartholomew et al. (2011) in their 
review of the general linear latent variable model; where the authors argued 
that the latent variable prior distribution can essentially be arbitrary, as the 
choice of 𝑓𝑓𝑋𝑋 seemed to have very little effect on the parameter estimates. 
However, Walker et al. (2010) points out the importance of sensitivity analyses 
of distributional assumption of structural and measurement equations for 
future research. In this paper we are interested also in the measurement errors 
in the latent variables themselves, and in their distribution, not only in how the 
relevant assumptions impact the parameter estimates. 
 
In this paper we model time and cost as latent variables. We explore how the 
assumptions of the distribution of the priors (normal and lognormal) impact the 
results. These variables cannot take negative values; for this reason, 
multiplicative error models can only be implemented when assuming positive, 
e.g. lognormally distributed, priors for the latent variables. Hence, we test a 
model with normal priors implemented with additive errors against a model 
with lognormal priors implemented with multiplicative errors. 
 

- Normal distribution as prior 
 
The true value of the latent variable 𝑋𝑋~𝑁𝑁(𝜇𝜇,𝜎𝜎2), for individual n, is 
 
𝑋𝑋𝑛𝑛 = 𝜇𝜇 + 𝜎𝜎 ∗ 𝛿𝛿𝑛𝑛,  (5) 

 
where 𝛿𝛿𝑛𝑛 is a draw from a standard normal distribution, 𝛿𝛿𝑛𝑛~𝑁𝑁(0,1), and 𝜇𝜇, 𝜎𝜎 
are parameters to be estimated. 
 

- Lognormal distribution as prior 
 
As an alternative prior, we select the lognormal distribution such that the true 
value of the latent variable 𝑋𝑋~𝐿𝐿𝑁𝑁(𝜇𝜇,𝜎𝜎2) is given by 
 
𝑋𝑋𝑛𝑛 = exp(𝜇𝜇 + 𝜎𝜎 ∗ 𝛿𝛿𝑛𝑛),  (6) 

 
where again 𝛿𝛿𝑛𝑛~𝑁𝑁(0,1), and 𝜇𝜇 and 𝜎𝜎 are the parameters to be estimated. We 
expect that this distribution is more consistent with our data for times and costs 
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because it is not symmetric and has support on the interval (0, +∞) which is 
consistent with the possible values of time and cost variables.  

2.2.3 – Latent variable measurement model 
 
In this section we define the measurement relationships that will connect the 
latent and observed values of a variable. 
 

- Classical measurement error model 
 
The most common error model assumes that the magnitude of the error is 
independent of the value of the variable. The indicator 𝐼𝐼𝑛𝑛 for individual n is  
 
𝐼𝐼𝑛𝑛 = 𝛼𝛼 + 𝜆𝜆 ∗ 𝑋𝑋𝑛𝑛 + ε,         with    𝜀𝜀𝑛𝑛~ 𝑁𝑁(0,𝜎𝜎𝜀𝜀2), (7) 

 
where 𝛼𝛼  is the offset and 𝜆𝜆  the scale parameter, both of which are fixed for 
normalisation purposes,  𝑋𝑋𝑛𝑛  is the latent attribute, 𝜀𝜀𝑛𝑛 is a normally distributed 
error component with expected value zero, and 𝜎𝜎𝜀𝜀 is a parameter to be 
estimated. 
 

- Multiplicative measurement error model 
 
An alternative to the classical error model is to assume that errors are 
proportional to the latent value. The indicator 𝐼𝐼𝑛𝑛 for individual n is in this case  
 
𝐼𝐼𝑛𝑛 = 𝛼𝛼 ∗ 𝑋𝑋𝑛𝑛𝜆𝜆 ∗ 𝑒𝑒𝜀𝜀𝑛𝑛 ,          𝑤𝑤𝑖𝑖𝑤𝑤ℎ 𝜀𝜀𝑛𝑛~𝑁𝑁(𝜇𝜇𝜀𝜀 ,𝜎𝜎𝜀𝜀2) (8) 

 
where, 𝛼𝛼 > 0 and 𝜆𝜆  are parameters fixed for normalisation purposes, and the 
random error, 𝑒𝑒𝜀𝜀𝑛𝑛 , has expected value equal to one, E[𝑒𝑒𝜀𝜀𝑛𝑛] = 1. This condition is 
similar to the additive errors having mean zero. In our case, the expected value 
of a lognormally distributed error component will equal one if its parameters 
fulfil the following condition 
 
𝜇𝜇𝜀𝜀  = −1

2
𝜎𝜎𝜀𝜀2 ,  (9) 

 
The multiplicative error formulation seems particularly suitable for modelling 
travel times, as psychological research has found evidence suggesting that 
perceived time follows a power function of the clock time, see Roeckelein 
(2000). 
 
The multiplicative error model can be transformed into linear form by taking 
the natural logarithm, 
 

log(In) = log(α) + λ ∗ log(Xn) + εn, 
 𝑤𝑤𝑖𝑖𝑤𝑤ℎ    𝜀𝜀𝑛𝑛 ~𝑁𝑁 �−1

2
𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒_𝑙𝑙𝑛𝑛
2 ,𝜎𝜎𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒_𝑙𝑙𝑛𝑛

2 �. 
(10) 

 

 
Now, we can only take the log of 𝐼𝐼𝑛𝑛 and 𝑋𝑋𝑛𝑛 if these variables only take positive 
values. For this reason, we adopt a latent variable prior distribution that has 
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support only within the positive semi-infinite interval (0, +∞). This is a natural 
constraint for travel times and costs variables.  

2.2.4 - Latent variables with multiple indicators and errors 
 
The HCM framework does not limit the number of indicators for a latent 
variable; in fact, it is desirable to have more than one indicator if available 
because that adds information. Hence, the models in this study have been 
designed to use the two available indicators for travel time: self-reported and 
software-simulated (i.e. modelled by transport networks). To be able to use the 
self-reported travel time we have included total travel time in the utility 
function for public transport, and not different travel time components.  
 
The self-reported travel time is assumed to have an error distribution that is 
independent from the other indicators. However, some of the software-
simulated variables will have common measurement error distributions. For 
instance, the simulated travel times for car as driver and car as passenger will 
be identical and have identical errors for a given trip. Similarly, car cost 
indicators are assumed to be proportional to the travel distance, which again 
will be identical for both driver and passenger alternatives. Table 1 shows the 
available indicators for each latent variable and whether the distribution of the 
measurement error is independent or shared with other indicators. 
 
Table 1. Overview of indicators and measurement error distributions 

Variable Mode Indicators Measurement error 
Travel time Public 

transport  
- Self-reported values (available 

only for the chosen mode) 
- Calculated values from the 

assignment model 
 

- Independent 
 

- Independent 
-  

 Car (Driver 
and 
Passenger) 

- Reported values (available only for 
the chosen mode) 

- Calculated values from the 
assignment model 
 

- Independent 
 

- Shared distribution for car 
as driver and car as 
passenger 

 
Travel cost2 Car (Driver 

and 
Passenger) 

- Calculated cost based on distance 
from assignment model 

- Shared distribution for car 
as driver and car as 
passenger 

2.3. Research questions and models 
After presenting the components of the HCM model and how the different 
modelling assumptions are implemented, this section shows how those 
elements are combined to explore the capabilities of the HCM framework to 
quantify the magnitude of the errors in the key explanatory variables in large-
scale travel demand modelling. We do this by addressing three Research 
Questions (RQ).  
 
                                                        
2 Public transport cost is not represented as a latent variable because of the very 
simple fare structure used in Stockholm. 
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RQ1: Do parameter estimates depend on assumptions regarding the 
measurement error model and prior distributions?  
 
To explore whether parameter estimates are dependent on the modelling 
assumptions we set up two models with different measurement error modelling 
assumptions. 𝑀𝑀0, implements the classical additive measurement error model, 
whilst 𝑀𝑀1 assumes the alternative multiplicative measurement error model. The 
two models also apply different distributional assumption of the latent variables 
prior distribution, for the reasons explained in Section 2.2.2. 
 
• 𝑀𝑀0 – Time variables for all motorised modes are modelled as latent variables 

with normal prior distributions. Measurement equations are additive.  
 

𝑈𝑈𝑖𝑖 = ∑ 𝛽𝛽𝑖𝑖𝑖𝑖 ∗ 𝑥𝑥𝑖𝑖𝑖𝑖 + ∑ 𝛾𝛾𝑖𝑖𝑖𝑖  ∗ 𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖∈𝑆𝑆𝑖𝑖 + 𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖∈𝑆𝑆𝑖𝑖 + 𝜀𝜀𝑖𝑖 ,  (11) 
𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖    = 𝜇𝜇𝑖𝑖𝑖𝑖     +  𝜎𝜎𝑖𝑖𝑖𝑖∗𝜙𝜙                 𝑤𝑤𝑖𝑖𝑤𝑤ℎ  𝜙𝜙~𝑁𝑁(0, 12)  (12) 
𝐼𝐼𝑖𝑖𝑖𝑖       = 𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖 + 𝜂𝜂𝑖𝑖𝑖𝑖   (13) 
𝜂𝜂𝑖𝑖          = 𝜎𝜎𝜀𝜀𝑖𝑖 ∗ 𝜙𝜙′                            𝑤𝑤𝑖𝑖𝑤𝑤ℎ  𝜙𝜙′~𝑁𝑁(0,12) , (14) 

 
where 𝐴𝐴𝑖𝑖 is the set of explanatory variables for alternative i, 𝛽𝛽𝑖𝑖𝑖𝑖 and 𝛾𝛾𝑖𝑖𝑖𝑖 are 
parameters for variable k and alternative i, 𝑥𝑥𝑖𝑖𝑖𝑖 are observable explanatory 
variables, 𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖 are latent variables, 𝐼𝐼𝑖𝑖𝑖𝑖 are the observed indicators, 𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖 is the 
alternative-specific constant, and 𝜀𝜀𝑖𝑖 is the random variation of the unobserved 
variables. 
 
• 𝑀𝑀1 – Alternatively, time variables for all motorised modes are modelled as 

latent variables with lognormal prior distributions. Measurement equations 
are multiplicative. 

 
𝑈𝑈𝑖𝑖 = ∑ 𝛽𝛽𝑖𝑖𝑖𝑖 ∗ 𝑥𝑥𝑖𝑖𝑖𝑖 + ∑ 𝛾𝛾𝑖𝑖𝑖𝑖  ∗ 𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖∈𝑆𝑆𝑖𝑖 + 𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖∈𝑆𝑆𝑖𝑖 + 𝜀𝜀𝑖𝑖 ,   (15) 
𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖    = 𝑒𝑒𝑥𝑥𝑒𝑒 (𝜇𝜇𝑖𝑖𝑖𝑖     +  𝜎𝜎𝑖𝑖𝑖𝑖 ∗ 𝜙𝜙 )                𝑤𝑤𝑖𝑖𝑤𝑤ℎ  𝜙𝜙~𝑁𝑁(0, 12)   (16) 
𝐼𝐼𝑖𝑖𝑖𝑖       = 𝐿𝐿𝐿𝐿𝑖𝑖𝑖𝑖 ∗ 𝜂𝜂𝑖𝑖𝑖𝑖   (17) 
𝜂𝜂𝑖𝑖 = 𝑒𝑒𝑥𝑥𝑒𝑒 �− 1

2
 𝜎𝜎𝜀𝜀𝑖𝑖2   + 𝜎𝜎𝜀𝜀𝑖𝑖 ∗ 𝜙𝜙′�                     𝑤𝑤𝑖𝑖𝑤𝑤ℎ 𝜙𝜙′~𝑁𝑁(0,12)  (18) 

 
Since there are different possible assumptions regarding the measurement 
error models and prior distributions, we need to select the measurement error 
model producing the most accurate parameter estimates, this triggers RQ2. 
 
RQ2: What measurement error model should we use? 
 
Measurement error models describe the relation between the observed and the 
true values; hence, it seems sensible to compare the goodness of fit for each of 
the competing measurement error models and select the one that better 
reproduces the observed data. We use the parameter estimates from the 
measurement equations of models 𝑀𝑀0 and 𝑀𝑀1, and we present and discuss 
common goodness-of-fit measurements, including: Analysis of simulated 
residuals; Bayes factor; and fit indexes (BIC and AIC). A description of these 
goodness-of-fit measurements is provided in Section 2.4. 
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Results from RQ2 will show that the multiplicative error formulation provides a 
better fit to the observed data. So, the next question regards how to quantify the 
errors in input variables. 
 
RQ3: How large are the errors in our input variables? 
 
To answer RQ3, we use 𝑀𝑀2, a HCM where travel time for car driver, car 
passenger and public transport, as well as cost variables for the car alternatives 
are modelled as latent variables with a multiplicative error model. As 
mentioned earlier, the multiplicative measurement error formulation assumes 
that measurement errors are heteroskedastic with standard errors proportional 
to the latent variable. These properties make it easy to compare the magnitude 
of the measurement errors for different variables, even if the latent variables 
have different ranges and/or units; e.g. time and cost variables. 
 
Results from RQ3 will shed some light on the common expectation that cost 
indicators are more error-prone than time indicators, as the modeller typically 
lacks cost data based on individual characteristics; such as the type of fuel, car, 
driving behaviour or fare for public transport.  

2.4. Testing  
Despite the increasing popularity of the HCM framework, discussion of the 
accuracy of measurement of latent variables in the HCM framework is largely 
absent in transportation research, see Motoaki and Daziano (2015). The 
traditional goodness-of-fit measurements of discrete choice models (e.g. 
likelihood ratio test and 𝜌𝜌2) cannot be used to assess the model fit of hybrid 
choice models, and there is no consensus about how to test the HCM goodness-
of-fit. 
 
Section 2.4.1 describes how we evaluate the measurement model fit and Section 
2.4.2 describes the overall goodness-of-fit measures that we apply to our HCM 
models. 
 

2.4.1. Measurement model fit 
 
We suggest and apply three tests of the fit of the measurement model. First, to 
visually inspect the normality assumption (since our two error models (7) and 
(10) both apply normally distributed error terms) we plot the residuals using a 
Quantile-Quantile plot (QQplot). A QQplot is a graphical technique for 
determining whether two data sets come from populations with a common 
distribution. In this plot, the quantiles of the first data set are plotted against the 
quantiles of the second data set, and if the two data sets come from a population 
with the same distribution, the points should follow a straight line.  
 
Second, we complement the QQplots with a density plot, based on simulated 
residuals from the two measurement models (7) and (10). 
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Third, we use the Shapiro-Wilk normality test to provide a quantitative 
measurement of the normality of residuals. It tests the null hypothesis that the 
population of the sample is normally distributed; Hence, if the p-value is less 
than the chosen significance level, the null hypothesis is rejected (Royston, 
1982). 

2.4.2 Model selection 
 
Studies in structural equation modelling (SEM) have established a number of 
goodness-of-fit measurements. For instance: the chi-square statistic, the root-
mean-square error of approximation (RMSEA), or fit indices such as the 
Bayesian Information Criterion (BIC) and the Akaike Information Criterion 
(AIC). Below we describe the three tests that we apply in this paper.  
 

- Bayes Factor (BF) 
 
Bayes factor (Kass and Raftery, 1995) is a well-known statistic in Bayesian 
hypothesis testing and model comparison. The Bayes factor (𝐵𝐵𝐵𝐵10) is the ratio of 
the likelihood probability of two competing hypotheses, and measures how well 
𝑀𝑀1 predicts the data relative to 𝑀𝑀0. In this study, 𝑀𝑀1 is a hybrid choice model 
with multiplicative error assumptions, and 𝑀𝑀0 is a hybrid choice model 
following an additive error model, 
 
𝐵𝐵𝐵𝐵10 = ∫𝑝𝑝(𝜃𝜃1|𝑀𝑀1) 𝑝𝑝(𝑖𝑖|𝜃𝜃1,𝑀𝑀1)𝑑𝑑𝜃𝜃1

∫𝑝𝑝(𝜃𝜃0|𝑀𝑀0) 𝑝𝑝(𝑖𝑖|𝜃𝜃0,𝑀𝑀0)𝑑𝑑𝜃𝜃0
= 𝑝𝑝(𝑀𝑀1|𝑖𝑖)

𝑝𝑝(𝑀𝑀0|𝑖𝑖)
𝑝𝑝(𝑀𝑀0)
𝑝𝑝(𝑀𝑀1)

= 𝑝𝑝(𝑖𝑖|𝑀𝑀1)
𝑝𝑝(𝑖𝑖|𝑀𝑀0)

   (21) 

 
where 𝑒𝑒(𝑀𝑀1|𝑖𝑖) and 𝑒𝑒(𝑀𝑀0|𝑖𝑖) are the model posterior probabilities given data 𝑖𝑖, 
𝑒𝑒(𝑀𝑀0) and 𝑒𝑒(𝑀𝑀1) are the model a priori probabilities, 𝜃𝜃0 and 𝜃𝜃1 are vectors of 
the model parameters, 𝑒𝑒(𝑖𝑖|𝑀𝑀1) is the probability of observing i under the 
assumption that errors in variables follow a multiplicative measurement error 
model, and 𝑒𝑒(𝑖𝑖|𝑀𝑀0) is the probability of choosing i under the assumptions of the 
additive measurement error model.  
 
If instead of the Bayes factor integral, the likelihood corresponding to the 
maximum likelihood estimate of the parameter for each statistical model is 
used, then the test becomes a classical likelihood-ratio test. Unlike a likelihood-
ratio test, this Bayesian model comparison does not depend on any single set of 
parameters, as it integrates over all parameters (with respect to the respective 
priors). Kass and Raftery (1995) showed that it is useful to consider twice the 
natural logarithm of the Bayes factor and interpret the resulting statistic as per 
the following table: 
 
Table 2. Indicative Bayes Factor thresholds 

𝐵𝐵𝐵𝐵10 2 log𝐵𝐵𝐵𝐵10 Evidence against 𝑀𝑀0 
<1 <0 Negative (support 𝑀𝑀0) 
1-3 0-2 Not worth more than a bare mention 

3-20 2-6 Positive (support 𝑀𝑀1) 
20-150 6-10 Strong 
>150 >10 Decisive 
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These values are given as suggestions and not as strict rules. 
 

- Bayesian information criterion (BIC) 
 
In this study we calculate the BIC as a stand-alone measurement of the model 
performance, defined as 
 
𝐵𝐵𝐼𝐼𝐴𝐴 = log(𝑛𝑛)𝑘𝑘 − 2 log(𝐿𝐿�) (22) 

 
where 𝐿𝐿� is the maximized value of the likelihood function of the model, 𝑛𝑛 is the 
sample size, and 𝑘𝑘 is the number of parameters to be estimated. The BIC index 
makes it easy to rank multiple models, as the lower BIC value, the better the 
model fit. 
 

- Akaike information criterion (AIC) 
 
The AIC is another comparative measure of the relative quality of statistical 
models for a given dataset. The AIC measurement is given by, 
 
𝐴𝐴𝐼𝐼𝐴𝐴 = 2𝑘𝑘 − 2 log(𝐿𝐿�) (23) 

 
where 𝐿𝐿� is the maximized value of the likelihood function of the model, and 𝑘𝑘 is 
the number of parameters to be estimated. AIC is interpreted in the same way as 
BIC, the model with the lowest AIC is preferred. 
 
Some authors have strongly advised against the use of these goodness-of-fit 
measurements when evaluating Hybrid Choice Models. For instance, Barrett 
(2007) and Ropovik (2015), state that fit indexes add nothing to the analysis, 
and Hayduk et al (2007) argue that fit index thresholds can be misleading and 
subject to misuse. Moreover, Motoaki and Daziano (2015), showed through a 
Monte Carlo experiment that the behaviour of SEM fit assessment tools did not 
work as expected for the HCM. Furthermore, these goodness-of-fit 
measurements are based on the model’s final likelihood; hence, when applied to 
HCM with different number of latent variables and or different measurement 
equation formulations, the goodness-of-fit measurements might provide 
counterintuitive results.  
 
Despite of these warnings, it is common to find fit indices reported in current 
literature despite these criticisms.  In this study, the Bayes factor, BIC and AIC 
goodness-of-fit indices are reported to inform further discussions. 

3. DATA 
We estimate a mode choice model for commuting3 trips in Stockholm using 
PythonBiogeme. The model is estimated on 3777 trips, for which the attributes 
                                                        
3 Commuting trips in this study include work and education purposes. 
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of the chosen and non-chosen modes were computed using the assignment 
model in TransCad. The final sample includes 41% trips by PT, 49% by car 
(driver and passenger) and 11% by walk and cycle. This distribution is broadly 
representative of commuting, where around 80% of trips to/from the inner city 
are made by PT in the peak hour but most trips to other areas are made by car. 
 
We estimate the models using the 2005/06 Swedish National Travel Survey. 
Respondents were randomly selected from the Swedish population aged 
between 6 and 84 years. Twenty-seven thousand interviews were conducted, 
with a response rate of 68 per cent. The respondents were asked to report all 
the trips they made on a randomly selected survey day. For each reported trip 
they were asked to indicate their main travel mode, start and end times, trip 
purpose, and origin and destination addresses. Also, the survey contains socio-
economic variables such as gender, household type, number of cars in the 
household, etc. which we have included in our models as discussed below and 
shown in Section 2.1. Further details of the survey design are given by 
Trafikanalys (2007). 
 
The data had to be processed in order to extract the variables necessary to 
define the utility functions. First, the Origin-Destination (OD) matrices were 
constructed, based on zone sizes between 0.1 and 1 𝑘𝑘𝑘𝑘2, with smaller zones 
located in the inner city and larger zones in the outskirts. Second, the distances 
between each reported origin and destination were calculated. Third, the travel 
times for each alternative mode were computed, and fourth the travel costs 
were calculated for the chosen and the unchosen alternatives. 

3.1. Stockholm Public Transport network overview 
The Stockholm PT network considered in this study covers the modes bus, 
metro, train and tram. The bus network provides a dense coverage of the entire 
Stockholm county area. In the assignment model bus services are separated into 
two mutually exclusive groups: the first group includes the inner-city buses, 
with an average speed of 15 km/h; and the second includes the commuting 
buses, with an average speed of 25 km/h. Metro and commuting train services, 
both have a radial configuration with centre in Stockholm central station (T-
Centralen). Metro services have an average speed of 35 km/h, whilst the 
average speed for commuting train services is 65 km/h. Finally, the average 
speed of other rail services, mainly trams, is 25 km/h. Assumed speeds are in 
accordance with statistics provided by the Stockholm Public Transport 
manager, SL (SLL 2009). 

3.2. Mode availability 
There are five alternative modes in the data: car driver, car passenger, public 
transport, bicycle, and walk. The car-driver mode is assumed to be available if 
the trip-maker has a driving licence, whilst the car-passenger mode is always 
considered to be available.  
 
Availability for car driver is designed to allow observations where leased 
and/or hired cars are used. To capture the additional attractiveness of the car 
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driver alternative for households that own one or more cars, we add a variable 
equal to the minimum of the number of cars in the household and the number of 
driving licences. To reduce the attractiveness of the car driver alternative we 
add a dummy variable that is one if the household members have no access to a 
private car, whilst car competition is modelled by a dummy variable that is one 
if there are more licences than cars in the household. The car passenger 
alternative is available for all, because many observed car passengers do not 
have access to a car in the household. However, to increase the attractiveness of 
car as passenger for households with access to a private car, we include a 
dummy variable indicating household car ownership. 
 
The bicycle mode is assumed to be available if the one-way home-to-work 
distance is less than 20km, while the walk mode is assumed to be available if the 
one-way home to work distance is less than 10km. The public transport 
alternative is available if the journey takes less than 220 minutes of which a 
maximum of 20 minutes can be allocated for access, and another 20 minutes for 
egress. In this study, access to/from public transport is considered only by foot, 
because of the low percentage (0.2%) of observations accessing PT by bicycle in 
our data. 

3.3. Cost variables 
 
The Stockholm Public Transport manager, SL, applies a unit fare structure to all 
public transport modes and travel distances within the area of study. 
 
To calculate the cost of a trip by public transport, the following logic was 
followed. First, a rational traveller who decides to commute regularly by public 
transportation will use a monthly discount ticket. Second, it is assumed that the 
traveller will commute daily, and therefore will make at least 40 trips per month 
(4 weeks of 5 working days and 2 trips per day). Third, the decision to buy a 
monthly ticket is based on commuting costs; therefore, any leisure trip will have 
zero marginal cost. Fourth, depending on whether the traveller is a student or 
not, the student or the full-price ticket will be used. 
 
Car driving costs are assumed to be proportional to the distance travelled, 
multiplied by a factor that represents the marginal cost of travel by car. For this 
study, 1.8 SEK/km is used as recommended by the Swedish Transport 
Administration. This value is used nationwide in transport demand models, 
including the national demand model used by the Government to produce CBA, 
and has produced reliable traffic volume forecasts (Eliasson et al. 2013; West et 
al. 2016). Half of this value accounts for fuel costs, whilst the rest covers 
depreciation etc. (Trafikverket 2015). While other, lower, values are used in 
other countries, we have retained the standard Swedish practice as it has 
worked well in similar contexts and there may therefore be perception 
differences between Sweden and other countries. All reasonable assumptions 
on this point are likely to be within the margins of estimation error.  
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Furthermore, our models allow the possibility to have different costs as car 
driver and as car passenger. For this, different cost sharing assumptions have 
been tested using the formulation suggested by Fox et al. (2009). 
 

𝐿𝐿(𝐴𝐴𝐶𝐶𝐶𝐶𝑤𝑤)𝐶𝐶𝐶𝐶 = 𝛽𝛽𝐶𝐶𝑒𝑒𝐶𝐶𝐶𝐶𝐴𝐴𝐶𝐶𝐶𝐶𝐴𝐴𝐶𝐶𝐶𝐶𝑤𝑤𝑂𝑂𝐶𝐶 �1 −
𝐴𝐴(𝑂𝑂𝐶𝐶𝐶𝐶 − 1)

𝑂𝑂𝐶𝐶𝐶𝐶
� 

 

(24) 

𝐿𝐿(𝐴𝐴𝐶𝐶𝐶𝐶𝑤𝑤)𝐶𝐶𝐶𝐶 = 𝛽𝛽𝐶𝐶𝑒𝑒𝐶𝐶𝐶𝐶𝐴𝐴𝐶𝐶𝐶𝐶𝐴𝐴𝐶𝐶𝐶𝐶𝑤𝑤𝑂𝑂𝐶𝐶 �
𝐴𝐴
𝑂𝑂𝐶𝐶𝐶𝐶

�, 

 

(25) 

 
where 𝐴𝐴 is the cost sharing factor between driver and passengers, 𝑂𝑂𝐶𝐶𝐶𝐶 is the 
mean occupancy for car drivers and 𝑂𝑂𝐶𝐶𝐶𝐶  is the mean occupancy for car 
passengers. After testing, we apply 𝐴𝐴 =  1 (i.e. equal sharing), with values 
extracted from the data of 𝑂𝑂𝐶𝐶𝐶𝐶 = 1.15 and 𝑂𝑂𝐶𝐶𝐶𝐶 = 2.54 . 

3.4. Sources of measurement error 
Transport modelling typically uses either self-reported travel times and travel 
costs, or level of service times and cost calculated by a modelled transport 
network. In the latter approach, simplifications and heuristics such as the ones 
described in the previous section are used, whilst in the former misperceptions 
and self-justifications are likely to alter the true value of the reported variables 
(Peer et al., 2014) 
 
The impact of measurement errors in the input variables is best understood by 
comparing the distributions of self-reported and calculated travel times  
 
Figure 2 shows ‘violin plots’ for 
self-reported and calculated travel 
times for public transport and car. 
A violin plot is similar to a box 
plot, but more informative as it 
also shows the probability density 
of the data (it is always 
symmetric). From these plots is 
clear that reported indicators 
experience a rounding effect, as 
we can observe multimodal 
distributions, with peaks in 
multiples of 15 minutes. In 
addition, we have plotted the 
mean, first and third quartiles of 
the distributions in the inner part 
of the violin plots. 

 
 
Figure 2. Violin plot for of reported and calculated travel 
times for car and public transport. 

 
The figure demonstrates discrepancies between reported and calculated travel 
times. We can for instance observe how rounding reported travel times create 
multimodal distributions, with peaks located on multiples of 15 minutes. The 
rounding effect has been studied by Rietveld (2002), where the author shows 
that rounding is a rule rather than an exception, and rounding has larger 
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impacts than just affecting the variance of travel times. Given the large scale at 
which rounding takes place, it may affect averages computed on the basis of 
national surveys when probabilities of rounding upward and downward do not 
cancel. 

4. RESULTS 
Parameter estimates, log-likelihood and goodness-of-fit results for the models 
are reported in Table 4. We can observe that time and cost parameters are all 
negative and so the model is micro-economically consistent. The rest of this 
section presents detailed answers to the research questions described in 
Section 2. 

RQ1: Do parameter estimates depend on assumptions regarding the 
measurement error model and prior distributions? 
To answer this question, we focus on whether different modelling assumptions 
modify the marginal utilities of time and cost multiplied by the scale, in other 
words, the γ parameters in equations (11) and (15). Looking at the parameter 
estimates from models 𝑀𝑀0 (normal priors and additive error model)  and 𝑀𝑀1 
(lognormal priors and multiplicative error model), we can observe that two of 
the parameter values differ by between 1 and 2 standard deviations. We 
conclude that parameter estimates of the choice model are reasonably robust to 
these modelling assumptions. However, the parameter estimates differ more 
substantially from those in the MNL model. 
 

Parameter M0 M1 
Value Std err Value Std err 

IVT Public Transport -0.101 0.00711 -0.110 0.0083 
IVT Car Driver -0.0595 0.0115 -0.0729 0.0136 
IVT Car Passenger -0.0625 0.0133 -0.0894 0.0178 

 

Table 3. Estimated 
parameters and standard 
errors. 
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Table 4. Estimation results 

Model: Benchmark M0 M1 M2 
Type of model: MNL HCM HCM HCM 

  normal priors and additive 
error model 

lognormal priors and 
multiplicative error model  

Number of latent variables: - 3 3 5 

Number of draws: - 5000 5000 20000 
Number  of parameters:  16 27 27 32 

Sample size: 3777 3777 3777 3777 
Final log likelihood:  -2386.65 -70600.30 -25869.71 -42815.96 

BIC 4848 141581 52006 85854 
AIC 4827 141413 51838 85686 

Name  Value t-test 
 

Value t-test 
 

Value t-test 
 

Value t-test 
 

ASC bicycle -1.30 -4.00 
 

-1.33 -4.01 
 

-1.33 -4.01 
 

-1.32 -3.96 
 

ASC car driver 1.76 6.23 
 

2.23 7.12 
 

2.37 7.63 
 

4.03 8.23 
 

ASC car passenger -1.93 -6.93 
 

-2.16 -7.00 
 

-2.04 -6.51 
 

-1.00 -2.82 
 

ASC public transport 1.13 3.21 
 

3.99 8.26 
 

4.30 8.19 
 

5.23 7.69 
 

Car competition -0.51 -2.46 
 

-0.60 -2.57 
 

-0.67 -2.81 
 

-0.73 -2.77 
 

Cost -0.79 -6.78 
 

-1.28 -8.99 
 

-1.50 -9.36 
 

-1.83 -8.33 
 

Living on apartment 1.10 5.25 
 

1.18 5.36 
 

1.19 5.52 
 

1.17 5.30 
 

No car ( car driver) -2.91 
-

15.04 
 

-3.49 -15.25 
 

-3.54 -14.68 
 

-3.79 -13.86 
 

No car ( car passenger) -1.15 -5.79 
 

-1.62 -7.14 
 

-1.64 -6.85 
 

-1.66 -6.59 
 

Time (bicycle) -0.09 -4.08 
 

-0.11 -4.64 
 

-0.13 -5.22 
 

-0.13 -5.00 
 

Time (car driver) -0.08 
-

10.23 
 

-0.06 -5.08 
 

-0.07 -5.34 
 

-0.09 -6.20 
 

Time (car passenger) -0.09 -9.14 
 

-0.06 -4.71 
 

-0.09 -5.01 
 

-0.11 -5.87 
 

Time (public transport) -0.06 
-

16.28 
 

-0.10 -14.23 
 

-0.11 -13.32 
 

-0.11 -11.70 
 

Time (walking) -0.06 -7.63 
 

-0.07 -8.16 
 

-0.08 -8.92 
 

-0.07 -8.37 
 

Winter -1.63 -4.34 
 

-1.69 -4.46 
 

-1.69 -4.48 
 

-1.69 -4.48 
 

Woman (car driver) -1.20 
-

12.48 
 

-1.44 -12.53 
 

-1.41 -12.06 
 

-1.53 -11.49 
 

Structural equations                   

𝜇𝜇𝐶𝐶𝐶𝐶𝑒𝑒−𝑑𝑑𝑒𝑒𝑖𝑖𝑑𝑑𝑒𝑒𝑒𝑒 𝑐𝑐𝑒𝑒𝐶𝐶𝐶𝐶  - - 
 

- - 
 

- - 
 

2.81 114.82 
 

log (𝜎𝜎𝐶𝐶𝐶𝐶𝑒𝑒−𝑑𝑑𝑒𝑒𝑖𝑖𝑑𝑑𝑒𝑒𝑒𝑒 𝑐𝑐𝑒𝑒𝐶𝐶𝐶𝐶)  - - 
 

- - 
 

- - 
 

0.11 3.34 
 𝜇𝜇𝐶𝐶𝐶𝐶𝑒𝑒−𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝑒𝑒𝑛𝑛𝑝𝑝𝑒𝑒𝑒𝑒 𝑐𝑐𝑒𝑒𝐶𝐶𝐶𝐶  - - 

 
- - 

 
- - 

 
1.87 84.21 

 log (𝜎𝜎𝐶𝐶𝐶𝐶𝑒𝑒−𝑝𝑝𝐶𝐶𝐶𝐶𝑒𝑒𝑛𝑛𝑝𝑝𝑒𝑒𝑒𝑒 𝑐𝑐𝑒𝑒𝐶𝐶𝐶𝐶)  - - 
 

- - 
 

- - 
 

0.17 6.37 
 𝜇𝜇𝐶𝐶𝐶𝐶𝑒𝑒−𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝑒𝑒𝑛𝑛𝑝𝑝𝑒𝑒𝑒𝑒 𝑐𝑐𝑒𝑒𝐶𝐶𝐶𝐶  - - 

 
19.80 101.85 

 
2.83 287.23 

 
2.84 285.95 

 log (𝜎𝜎𝐶𝐶𝐶𝐶𝑒𝑒−𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝑒𝑒𝑛𝑛𝑝𝑝𝑒𝑒𝑒𝑒 𝐶𝐶𝑖𝑖𝑡𝑡𝑒𝑒)  - - 
 

2.72 148.98 
 

0.78 -15.40 
 

-0.27 -16.79 
 

𝜇𝜇𝐶𝐶𝐶𝐶𝑒𝑒−𝑑𝑑𝑒𝑒𝑖𝑖𝑑𝑑𝑒𝑒𝑒𝑒 𝐶𝐶𝑖𝑖𝑡𝑡𝑒𝑒  - - 
 

21.90 93.06 
 

2.95 249.53 
 

2.95 257.46 
 

log (𝜎𝜎𝐶𝐶𝐶𝐶𝑒𝑒−𝑑𝑑𝑒𝑒𝑖𝑖𝑑𝑑𝑒𝑒𝑒𝑒 𝐶𝐶𝑖𝑖𝑡𝑡𝑒𝑒)  - - 
 

2.76 157.37 
 

0.75 -17.51 
 

-0.29 -17.59 
 

𝜇𝜇𝐶𝐶𝑃𝑃 𝐶𝐶𝑖𝑖𝑡𝑡𝑒𝑒  - - 
 

47.70 107.65 
 

3.74 373.76 
 

3.74 373.80 
 

log (𝜎𝜎𝐶𝐶𝑃𝑃 𝐶𝐶𝑖𝑖𝑡𝑡𝑒𝑒)  - - 
 

3.39 160.45 
 

0.69 -19.81 
 

-0.37 -19.63 
 

Measurement equations                   
log (𝜎𝜎𝑒𝑒𝑒𝑒𝑝𝑝𝑒𝑒𝑒𝑒𝐶𝐶𝑒𝑒𝑑𝑑 𝐶𝐶𝑃𝑃 𝐶𝐶𝑖𝑖𝑡𝑡𝑒𝑒)  - - 

 
2.16 33.71 

 
-1.08 -38.60  -1.08 -38.37 

 log (𝜎𝜎𝑒𝑒𝑒𝑒𝑝𝑝𝑒𝑒𝑒𝑒𝐶𝐶𝑒𝑒𝑑𝑑 𝐶𝐶𝐶𝐶𝑒𝑒−𝑑𝑑𝑒𝑒𝑖𝑖𝑑𝑑𝑒𝑒𝑒𝑒 𝐶𝐶𝑖𝑖𝑡𝑡𝑒𝑒)  - - 
 

2.31 101.44 
 

-0.98 -37.68-  -0.99 -39.39 
 log (𝜎𝜎𝑒𝑒𝑒𝑒𝑝𝑝𝑒𝑒𝑒𝑒𝐶𝐶𝑒𝑒𝑑𝑑 𝐶𝐶𝐶𝐶𝑒𝑒−𝑝𝑝𝐶𝐶𝐶𝐶𝐶𝐶𝑒𝑒𝑛𝑛𝑝𝑝𝑒𝑒𝑒𝑒 𝐶𝐶𝑖𝑖𝑡𝑡𝑒𝑒)  - - 

 
2.33 45.54 

 
-0.86 -17.28  -0.87 -17.13 

 log (𝜎𝜎𝑐𝑐𝐶𝐶𝑙𝑙𝑐𝑐𝑐𝑐𝑙𝑙𝐶𝐶𝐶𝐶𝑒𝑒𝑑𝑑 𝐶𝐶𝐶𝐶𝑒𝑒 𝐶𝐶𝑖𝑖𝑡𝑡𝑒𝑒)  - - 
 

1.71 49.69 
 

-1.49 -26.72  -1.41 -33.80 
 log (𝜎𝜎𝑐𝑐𝐶𝐶𝑙𝑙𝑐𝑐𝑐𝑐𝑙𝑙𝐶𝐶𝐶𝐶𝑒𝑒𝑑𝑑 𝐶𝐶𝑃𝑃 𝐶𝐶𝑖𝑖𝑡𝑡𝑒𝑒)  - - 

 
3.01 158.16  -1.10 -37.19  -1.09 -36.84 

 log (𝜎𝜎𝑐𝑐𝐶𝐶𝑙𝑙𝑐𝑐𝑐𝑐𝑙𝑙𝐶𝐶𝐶𝐶𝑒𝑒𝑑𝑑 𝐶𝐶𝐶𝐶𝑒𝑒 𝑐𝑐𝑒𝑒𝐶𝐶𝐶𝐶)  - -  - -  - -  -0.70 -11.07  
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RQ2: What measurement error model should we use?  
Answering RQ2 to determine whether the additive error model is outperformed 
by a multiplicative formulation requires again models 𝑀𝑀0 (normal priors and 
additive error model) and 𝑀𝑀1 (lognormal priors and multiplicative error model). 
Figures 3 and 4 show the QQplots for the simulated residuals of each time 
variable under the two different formulations. Based on a visual inspection, 
lines plotted on the left have a stronger curvature than the ones on the right, 
indicating that the multiplicative formulation fits the observed data better than 
the additive. 
 

 
Figure 3.QQplot of time variable residuals following 
an additive error formulation 

 
Figure 4. QQplot of time variable residuals following 
a multiplicative error formulation 

 
In addition, figures 5 and 6 show that the density functions of residuals under 
the additive formulation are more skewed than the densities of residuals under 
the multiplicative formulation, confirming the impression given by the QQPlots. 
 

 
Figure 5. Density plot of time variable residuals 
following an additive error formulation 

 
Figure 6. Density plot of time variable residuals 
following a multiplicative error formulation  

 
Finally, the normality of the residuals is evaluated with the Shapiro-Wilk test p-
value.  
 

Model M0 M1 
Time 

variable 
PT < 2.2e-16 2.09 e-04 
Car Driver < 2.2e-16 4.07e-09 
Car Passenger < 2.2e-16 2.84e-07 

 

Table 5. Shapiro-Wilk test p-value 
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Results from these tests show that p-values are low in all cases; hence, the 
normality assumption can be rejected for both models at all reasonable levels of 
confidence. Nevertheless, results from the Shapiro-Wilk test provide a 
numerical tool to rank the relative likelihood of the residuals produced by the 
different models. By interpreting the results in this way, we observe that all 
residuals from the multiplicative formulation M1 are much more likely to follow 
a normal distribution than any of its additive counterparts. These results 
support the conclusions drawn from the density and QQplots. 
 
Finally, overall model performance between 𝑀𝑀0 and 𝑀𝑀1 is compared by means 
of the Bayes Factor, BIC and AIC values. The test value 2 log𝐵𝐵𝐵𝐵10 is 8.96e+4, 
which, in accordance with the suggested values by Kass and Raftery (1995), 
provides “decisive support” for the multiplicative formulation. Moreover, the 
BIC and AIC criteria, reported in table 4, also favour the use of a multiplicative 
error model.4 

RQ 3: How large are the errors in our input variables?  
To answer RQ3, we model the time and cost variables under study as latent 
constructs following a multiplicative error model and compare the shape of the 
estimated distributions of residuals. As detailed in Section 2 the expected value 
of the residual distribution is fixed to one for all variables but the lognormal 
distribution is still flexible enough to model the variance in the data. 
 

 
Figure 7. Density plot of simulated residuals from estimated distributions. Numbers between brackets show 
the standard deviation of the distribution. 
 

                                                        
4 The likelihood value from the MNL model is not comparable with the HCM values, 
as discussed in 2.4.2 above.  
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Figure 7 shows the estimated distribution of the latent variable residuals. The 
legend gives the standard deviations of the distributions, which, given the mean 
normalised at 1, represent the coefficients of variation. Results show that among 
the software calculated variables, car cost residuals have the largest standard 
deviation of the three (0.53), followed by PT time (0.35) and Car time residuals 
(0.25).  

5. MODEL PROPERTIES AND POLICY IMPLICATIONS 
To confirm that the final model gives a reasonable representation of travel by 
commuters in Stockholm, we calculated the implied elasticities and values of 
time and compared those with established values. 

5.1. Elasticities 
Aggregate direct price elasticities for the modes were calculated based on a 
model simulation with a 10% increase in the variable. Elasticities are calculated 
as 
 
𝐸𝐸𝑥𝑥→𝑦𝑦 =  𝐿𝐿𝑂𝑂𝐿𝐿�𝐶𝐶𝑦𝑦�−𝐿𝐿𝑂𝑂𝐿𝐿

(𝐶𝐶𝑥𝑥)

𝐿𝐿𝑂𝑂𝐿𝐿�𝐶𝐶𝑦𝑦�−𝐿𝐿𝑂𝑂𝐿𝐿(𝐶𝐶𝑥𝑥) , (26) 

where x refers to the initial state, y to the new state, D is demand, P is price level 
and E is elasticity.  

To further inform this evaluation, results from model 𝑀𝑀2 are compared against a 
MNL model with identical specification of the utility functions, used as a 
benchmark. Table 6 presents demand elasticities based on parameters from the 
benchmark and 𝑀𝑀2 models. The elasticities indicate that car passenger is the most 
price sensitive mode, followed by public transport and car driver. This ranking 
is consistent between the two models. Since the sample population is 
reasonably representative of commuters in Stockholm, we can take these 
elasticities as roughly representative of Stockholm commuters. 

Table 6. Aggregate direct price arc-elasticities  

  Benchmark 
model (MNL) 

M2 
(HCM) 

Public transport cost +10% -0,27 -0,98 
Car cost +10% 

Car – driver 
 

-0,19 
 

-0,47 
Car-passenger -0,43 -2,1 

Car -  combined -0,23 -0,71 

Holmgren (2007) presents in its meta-analysis of public transport demand, 
price elasticity values ranging from −0.009 to −1.32, with a mean value of −0.38. 
Similar values are reported by Kremers et al (2002) and DfT (2016), where the 
mean value for short run price elasticities is -0.4. Car price elasticities presented 
above are around twice the fuel price elasticity, as fuel costs make up around 
half the considered marginal cost of driving. De Jong and Gunn (2001) report 
fuel price elasticities for short term commuting trips between -0.16 and -0.52. 
DfT (2016) suggests that the average fuel price elasticity should lie within the 
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range -0.25 to -0.35. The Danish national passenger model reports a price 
elasticity for trips to -0.16 and for mileage -0.42 (Rich and Hansen, 2016). The 
Swedish national transport model produces the trip price elasticity -0.11 and 
mileage price elasticity of -0.54 for car. 

Looking at the differences between the HCM and the MNL models, the HCM 
gives larger elasticities for all modes. This finding is consistent with the results 
in Varotto et al. (2017), where they observe a 65% increase of the time elasticity 
value when using a HCM formulation. While this leads to values in our work for 
the public transport and car passenger cost elasticities that are outside the 
ranges indicated in the literature, these can reasonably be associated with the 
ways in which costs have been calculated and, in the case of car passengers, 
with the small sample size. The finding that the omission of measurement error 
leads to substantial dilution of the coefficient values, both for time and for cost, 
remains soundly based. 

While the elasticity is a somewhat abstract statistic, it should be noted that the 
responsiveness of forecasts to any changes in cost are proportional to these 
elasticity values, so any bias wold also apply to more realistic forecast scenarios. 

5.2. Values of time 
The Value of Time (VoT) is the sum of the marginal utility of time (the sum of 
the opportunity value of time and the direct utility of travel time), divided by the 
marginal utility of money (DeSerpa, 1971; Jara-Díaz, 2003). The VoT can be 
calculated from the model parameters as 
 

𝐿𝐿𝐶𝐶𝑉𝑉𝑖𝑖 =
𝜕𝜕𝑉𝑉𝑖𝑖

𝜕𝜕𝑥𝑥𝑇𝑇𝑖𝑖𝑇𝑇𝑇𝑇
�

𝜕𝜕𝑉𝑉𝑖𝑖
𝜕𝜕𝑥𝑥𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
�

 . 
(27) 

 
In the particular case where the utility function is linear in time and logarithmic 
in cost, the VoT is given by, 
 

𝐿𝐿𝐶𝐶𝑉𝑉𝑖𝑖 =
𝛽𝛽𝐼𝐼𝑉𝑉𝑃𝑃𝑖𝑖

𝛽𝛽𝐶𝐶𝑒𝑒𝐶𝐶𝐶𝐶
� ∗ 𝐴𝐴𝐶𝐶𝐶𝐶𝑤𝑤  (28) 

 
Table 7 shows the VoT estimates for motorised transport modes and compares 
values from 𝑀𝑀2 with the benchmark model (MNL). In addition, two different 
VoT from 𝑀𝑀2 are presented in Table 7 for the car alternatives. One is calculated 
based on the mean value from the estimated latent cost distributions, and the 
other uses the average value of the cost variables with measurement errors.  
 
From these values we can observe two things. First, VoT estimates in Table 7 
suggest that differences between the benchmark and 𝑀𝑀2 models are not only a 
scale issue, as the ratio of parameters is not affected by scale changes.  
 
Second, when we compare the VoT provided by the benchmark MNL model 
against the ones from the HCM – 𝑀𝑀2, we observe smaller VoT, between 15 to 
45%, when time and cost are treated as latent variables simultaneously. These 
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results suggest that time and cost parameters are poorly estimated when using 
RP data, as a consequence of measurement errors. So, by modelling time and 
cost as latent variables with a multiplicative error formulation, as done in 𝑀𝑀2, 
we observe a 130% increase of the cost parameter; a 4% increase of the car-
driver time parameter, a 23% increase of the car-passenger time parameter, 
and the time parameter for public transport doubles, when compared against 
the estimates from the benchmark MNL model. 
 
We can interpret these results as another indication of which variables have the 
largest measurement errors, as the larger the error in the variable, the larger 
the bias towards zero in the associated parameter. This phenomenon is known 
as regression dilution; see for instance Díaz et al., 2015. Hence, when the model 
accounts for errors in variables, we should expect a larger percentage increase 
in the parameter associated with the more contaminated variables. 
 
For comparison, the VoT for commuting trips, estimated on SP data are 98 
SEK/h for car and 53 - 72 SEK/h for public transport (Börjesson and Eliasson 
(2014). For car, the SP VoT is lower than that resulting from our benchmark 
model, but for public transport, it is higher than that resulting from our the M2 
model. Now, comparison with SP does not lend any conclusive evidence as to 
whether the baseline or the M2 estimates is closest to the true VoT. Stated 
preference data is not subject to measurement errors, but it has other problems 
such as reference dependency and gain-loss asymmetry. Moreover, the VoT 
estimated on SP data are not directly comparable to the travel survey data 
because VoT for, say car drivers, is estimated on data collected from car drivers 
only (and the values of time for PT are estimated for PT users only). However, in 
a mode choice model as in this study, the estimated VoTs are representative for 
all travellers (not only the car drivers or PT users).  
 
Table 7. Values of Time [SEK/h] 

Mode Benchmark 
 model 

M2 model 
Latent average cost Average cost with 

measurement errors 
Car Driver 155 87 67 
Car Passenger 55 44 25 
Public transport 68 -* 59 
* Pt cost not treated as latent. 
 
Previous studies reporting VoT from HCMs accounting for measurement errors 
(Walker, 2010; Varotto, 2017) only treat the time as latent variables. They 
found higher time parameters, which translates into a higher VoT. However, our 
results indicate that the VoT estimates based on RP data are already too high 
due to large measurement errors in the cost variables. Hence, even higher VoT 
by means of more advanced modelling defies intuition and might lead to less 
accurate forecasts, particularly when pricing measures are being analysed. 

6. CONCLUSIONS 
Errors in time and cost variables are a well-known problem. In this paper, we 
show how parameter estimates differ substantially between models that 
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account for measurement errors in explanatory variables and those that do not, 
as well as how modelling assumptions for HCM impact parameter estimates. 
 
All tests performed, formal and informal, favour the use of a multiplicative error 
models for variables with support only on a semi-infinite interval and our 
dataset. However, the estimated time and cost parameters are reasonably robust 
to modelling assumptions. This is interesting because most of the HCM 
applications in recent studies did not consider a measurement equation other 
than additive, and it is possible that better results could have been achieved by 
the use of a multiplicative error model. As shown in this paper, we can increase 
the performance of our models, and our understanding of the error source in 
the input variables by testing different modelling assumptions of the latent 
variable prior distributions and the measurement error formulation. 
 
Adopting a multiplicative error formulation not only gives a better fit; it also 
provides a consistent framework that can be applied to any variable which has 
support only on a semi-infinite interval, in other words, variables that can only 
take one sign, such as: time, cost, income, etc. Moreover, as measurement errors 
are modelled as a factor rather than an absolute value, the estimated 
measurement error distributions are directly comparable among variables and 
indicators. Applying a multiplicative error formulation to our case study, results 
from 𝑀𝑀2 suggest that cost indicators have proportionately larger measurement 
errors than any time indicators. Furthermore, estimated measurement error 
distributions of the different indicators indicate that; 
 

1. Errors in self-reported time indicators are larger than errors in software 
calculated indicators for car-driver and car-passenger, and of similar 
magnitude for public transport.  

2. Among self-reported time indicators, car-passenger has the largest 
errors, followed by car-driver and public transport.  

3. Among calculated time indicators, public transport has higher errors 
than car. This result suggests that the modelling assumptions of the 
public transport network are worse than the ones for the car network. 
This finding is not surprising as the number of modelling assumptions 
for the public transport network is larger than for the car network, 
increasing the chances of introducing measurement errors.  
 

In this framework, the shape of the error distribution and its mean value are 
imposed by the modeller. In this case, the lognormal probability density 
function is particularly useful to represent right-skewed data. However, in a 
lognormal distribution the mode and median will always be smaller than the 
mean. Because these characteristics of the distribution are unchangeable, 
meaningful claims about the frequency of an indicator to over or under-report 
cannot be made from the shape of the estimated error distributions. 
 
A drawback of using advanced models such as the HCM formulation presented 
in this study is the increased difficulty of dealing with confounding effects. For 
instance, the interaction between taste variations and measurement errors in 
the input variables: the more flexibility we build into our models, the higher the 
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risk for these undesired interactions. These interactions are dangerous for two 
main reasons; first, we do not know their magnitude and second, data to help us 
evaluate them it is very scarce. Despite the challenges, the HCM framework 
offers a promising tool to explore the magnitude of the interactions between 
measurement errors in variables and taste variations. (Vij and Walker, 2016) 
 
Table 4 shows that BIC and AIC indices yield counterintuitive values when used 
to compare models with different number of latent variables. Nevertheless, BIC 
and AIC values when comparing models with equal number of latent variables, 
𝑀𝑀0 and 𝑀𝑀1, are in agreement with the other tests carried out (QQplots, density 
plots and Shapiro-Wilk test) and favour the use of a multiplicative error 
formulation. 
 
Simulated price elasticities for the MNL model yield values reasonably 
consistent with the international literature. However, the HCM accounting for 
measurement errors in time and cost variables generates significantly higher 
elasticities. This finding is consistent with the results in Varotto et al. (2017).  
 
Finally, our results indicate that the VoT estimates based on RP data are too 
high due to large measurement errors in the cost variables. Hence, even higher 
VoT by means of more advanced modelling defies intuition and might lead to 
less accurate forecasts, particularly when evaluating pricing measures. 
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8. APPENDIX 1 
This appendix presents the explanatory variables entering the utilities of the 
models and gives an example of the full model specification. 
 
Table A1.1. Benchmark model full specification. 

Parameter Walk Bicycle PT Car 
Driver 

Car 
Passenge

r 
𝐴𝐴𝐴𝐴𝐴𝐴 𝐵𝐵𝑖𝑖𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑒𝑒  1 -   

𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐶𝐶𝐶𝐶 𝐷𝐷𝐶𝐶𝑖𝑖𝐷𝐷𝑒𝑒𝐶𝐶 - - - 1 - 
𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐶𝐶𝐶𝐶 𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝑒𝑒𝑛𝑛𝑃𝑃𝑒𝑒𝐶𝐶 - - - - 1 
𝐴𝐴𝐴𝐴𝐴𝐴 𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵𝑖𝑖𝐵𝐵 𝑉𝑉𝐶𝐶𝐶𝐶𝑛𝑛𝐶𝐶𝑒𝑒𝐶𝐶𝐶𝐶𝑤𝑤 - - 1 - - 

InVehicle T𝑖𝑖𝑘𝑘𝑒𝑒 –𝐵𝐵𝑖𝑖𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑒𝑒 - bc_tt_min - - - 
Winter - winter - - - 

𝐴𝐴𝐶𝐶𝐶𝐶 𝐴𝐴𝐶𝐶𝑘𝑘𝑒𝑒𝑒𝑒𝑤𝑤𝑖𝑖𝑤𝑤𝑖𝑖𝐶𝐶𝑛𝑛 - - - ccomp - 
𝐻𝐻𝐶𝐶𝑃𝑃𝐶𝐶𝑒𝑒ℎ𝐶𝐶𝐵𝐵𝑑𝑑 𝑛𝑛𝐶𝐶 𝐵𝐵𝐶𝐶𝐶𝐶 (𝐴𝐴𝐶𝐶𝐶𝐶 𝐷𝐷𝐶𝐶𝑖𝑖𝐷𝐷𝑒𝑒𝐶𝐶) - - - nocars - 

InVehicle T𝑖𝑖𝑘𝑘𝑒𝑒 –𝐴𝐴𝐶𝐶𝐶𝐶 𝐷𝐷𝐶𝐶𝑖𝑖𝐷𝐷𝑒𝑒𝐶𝐶 - - - c_tt_min - 
Woman (Car Driver) - - - woman - 

𝐴𝐴𝐶𝐶𝐶𝐶𝑤𝑤 - - l_ptcost l_cdcost l_cpcost 
𝐻𝐻𝐶𝐶𝑃𝑃𝐶𝐶𝑒𝑒ℎ𝐶𝐶𝐵𝐵𝑑𝑑 𝑛𝑛𝐶𝐶 𝐵𝐵𝐶𝐶𝐶𝐶 (𝐴𝐴𝐶𝐶𝐶𝐶 𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝑒𝑒𝑛𝑛𝑃𝑃𝑒𝑒𝐶𝐶) - - - - nocars 

InVehicle T𝑖𝑖𝑘𝑘𝑒𝑒 –𝐴𝐴𝐶𝐶𝐶𝐶 𝑃𝑃𝐶𝐶𝐶𝐶𝐶𝐶𝑒𝑒𝑛𝑛𝑃𝑃𝑒𝑒𝐶𝐶 - - - - c_tt_min 
𝑉𝑉𝐶𝐶𝑤𝑤𝐶𝐶𝐵𝐵 𝑉𝑉𝐶𝐶𝐶𝐶𝐷𝐷𝑒𝑒𝐵𝐵𝑉𝑉𝑖𝑖𝑘𝑘𝑒𝑒 

− 𝑃𝑃𝑃𝑃𝑃𝑃𝐵𝐵𝑖𝑖𝐵𝐵 𝑉𝑉𝐶𝐶𝐶𝐶𝑛𝑛𝐶𝐶𝑒𝑒𝐶𝐶𝐶𝐶𝑤𝑤 - - pt_ttt_min - - 

Living on apartment block  apartment - - - - 
“In − Vehicle” Time –  Walking wa_tt_min - - - - 

 
 
apartment  Dummy variable. It takes the value 1 if the user lives in an 

apartment and 0 otherwise 
bc_tt_min Bicycle travel time in minutes 
carow  Car ownership. The variable takes the minimum value between the 

number of cars in the household and the number of driver licenses. 
ccomp  Car competition dummy variable. It takes the value 1 if the number 

of cars in the household is less than the number of driver licenses 
and 0 otherwise. 

l_cdcost Logarithmic transformation of the car driver costs in SEK. Costs are 
proportional to the distance travelled, multiplied by a factor that 
represents the marginal cost of travel by car5. Furthermore, 
different cost sharing assumptions have been tested using the 
formulation suggested by Fox et al.(2009). 

 
𝐿𝐿(𝐴𝐴𝐶𝐶𝐶𝐶𝑤𝑤)𝐶𝐶𝐶𝐶 = 𝛽𝛽𝐶𝐶𝑒𝑒𝐶𝐶𝐶𝐶𝐴𝐴𝐶𝐶𝐶𝐶𝐴𝐴𝐶𝐶𝐶𝐶𝑤𝑤𝑂𝑂𝐶𝐶 �1 − 𝑆𝑆(𝑂𝑂𝐶𝐶𝐶𝐶−1)

𝑂𝑂𝐶𝐶𝐶𝐶
�  

 

(27) 

𝐿𝐿(𝐴𝐴𝐶𝐶𝐶𝐶𝑤𝑤)𝐶𝐶𝐶𝐶 = 𝛽𝛽𝐶𝐶𝑒𝑒𝐶𝐶𝐶𝐶𝐴𝐴𝐶𝐶𝐶𝐶𝐴𝐴𝐶𝐶𝐶𝐶𝑤𝑤𝑂𝑂𝐶𝐶 �
𝑆𝑆

𝑂𝑂𝐶𝐶𝐶𝐶
�  

 

(28) 

where: 
 
S is the cost sharing factor 

                                                        
5 Marginal cost of travel by car assumed 1.8 SEK/km as recommended by the 
Swedish Transport Authority (Trafikverket 2015). 
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𝑂𝑂𝐶𝐶𝐶𝐶 is the mean occupancy for car driver observations 
𝑂𝑂𝐶𝐶𝐶𝐶 is the mean occupancy for car passenger observations 

 
Final parameters used in the case study are S = 1, 𝑂𝑂𝐶𝐶𝐶𝐶 = 1.17 and 
𝑂𝑂𝐶𝐶𝐶𝐶 = 1.55. 

 
l_cpcost Logarithmic transformation of the car passenger costs in SEK. The 

cost for the passenger alternative is calculated following the same 
procedure described above. 

 
c_tt_min   Car travel time in minutes 
nocars Dummy variable. It takes the value 1 if the user´s household do not 

own any car and 0 otherwise 
l_ptcost Logarithmic transformation of the cost of the public transport 

alternative in SEK. The cost of the monthly ticket has been divided 
by 40 trips, assuming 4 weeks of 5 working days and 2 trips per 
day. Depending if the traveller is a student or not, the student or the 
full ticket has been used. No distinction has been made between the 
people who reported that they own a discount ticket and the ones 
who do not; this was done to prevent confirmation biases as PT for 
the people who normally commute by public transport will be 
cheaper than for others. 

pt_ttt_min Total travel time in minutes for public transport. Including: Access 
and egress time, first waiting time, in-Vehicle travel time and 
transfer time. 

wa_tt_min Walking travel time in minutes 
winter Dummy variable. It takes the value 1 if the trip has been made 

between weeks 47 and 14 and 0 otherwise 
woman Dummy variable. It takes the value 1 if the user is a woman and 0 

otherwise 
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